Publicaciones

(2025). Integrating imprecise data in generative models using interval-valued Variational Autoencoders. In Information Fusion.

PDF Citar Código fuente Proyecto DOI

(2024). Few-shot generative compression approach for system health monitoring. In Reliability Engineering & System Safety.

PDF Citar Código fuente Proyecto DOI

(2023). Learning remaining useful life with incomplete health information: A case study on battery deterioration assessment. In Array.

PDF Citar Proyecto DOI

(2023). ICFormer: A Deep Learning model for informed lithium-ion battery diagnosis and early knee detection. In Journal of Power Sources.

PDF Citar Código fuente Datos Proyecto DOI

(2023). Physics-informed learning under epistemic uncertainty with an application to system health modeling. In International Journal of Approximate Reasoning.

PDF Citar Proyecto DOI

(2023). Simplified models of remaining useful life based on stochastic orderings. In Reliability Engineering & System Safety.

PDF Citar Proyecto DOI

(2023). Enhancing Time Series Anomaly Detection Using Discretization and Word Embeddings. In SOCO.

PDF Citar Proyecto DOI

(2023). Data-Driven Diagnosis of PV-Connected Batteries: Analysis of Two Years of Observed Irradiance.

PDF Citar Proyecto DOI

(2022). Weakly Supervised Learning of the Motion Resistance of a Locomotive Powered by Liquefied Natural Gas. In SOCO.

PDF Citar Proyecto DOI

(2022). Li-ion battery degradation modes diagnosis via Convolutional Neural Networks. In Journal of Energy Storage.

PDF Citar Código fuente Datos Proyecto DOI Demo

(2022). Informed Weak Supervision for Battery Deterioration Level Labeling. In IPMU.

PDF Citar Proyecto DOI

(2022). Variational encoding approach for interpretable assessment of remaining useful life estimation. In Reliability Engineering & System Safety.

PDF Citar Código fuente Datos Proyecto DOI Demo

(2022). RUL-RVE: Interpretable assessment of Remaining Useful Life. In Software Impacts.

PDF Citar Código fuente Datos Proyecto DOI Demo

(2020). Graphical analysis of the progression of atrial arrhythmia using recurrent neural networks. In International Journal of Computational Intelligence Systems.

PDF Citar Código fuente Proyecto DOI